Сродство́ — способность одного объекта(тела) связываться с другим объектом и образовывать таким образом новый комплексный объект. Понятие сродство применяется как физическим (пр. Сродство к электрону ) объектам (Элементарным частицам. атомам ), так и к сложным молекулам (в химии ), в том числе и к белкам (в биохимии ). Коэффициентом, характеризующим силу сродства является энергия связи. выделяющаяся или затрачиваемая при возникновении связи объектов(далее молекул), измеряемая в килоджоулях(кДж) или электронвольтах(эВ) .
Термин «аффинность » или «аффинитет» фактически является синонимами понятия «сродства», тем не менее в русском научном языке это слово больше относится к иммунологии (взаимодействие антигена и антитела ). В неорганической химии похожим значением обладает термин «электроотрицательность », характеризующий сродство одинарных атомов друг к другу.
В биохимии сродство лиганда к рецептору характеризует так называемый коэффициент K i (сокр. от a dissociation constant used in receptor binding and enzyme inhibition — Константа диссоциации применительно к связыванию с рецепторами (receptor b i nding ), а также ингибирования энзимов ). K i можно рассчитать [1] по следующей форуле. Если EC50 — половина от максимально эффективной концентрации лиганда. характеризующий силу действия лиганда на рецептор, [ligand] — концентрация лиганда в растворе, K d — константа диссоциации для для лиганд-рецепор связи.
Таким образом K i — это концентрация конкурирующего лиганда, если он соединён с половиной доступных рецепторов в равновесном состоянии системы. Чем ниже K i — тем большее сродство к рецептору имеет данный лиганд. [1]
Существует несколько общедоступных базы данных (BindingDB. org или PDSP Ki Database.
Отметим, что K i характеризует силу взаимодействия (в том числе время, в течение которого рецептор занят лигандом), но не характеризует модальность(полярность) этой силы(ингибирование либо активация рецепротра).
Так же, в настоящие время существют программы — симуляторы. использующиеся в процессе фармакологических исследований, с помощью которых можно рассчитывать коэффициенты связи заданных лигандов к заданным белкам-рецепторам (см. Молекулярное моделирование ).
- Химическое сродство // Энциклопедический словарь Брокгауза и Ефрона. В 86 томах (82 т. и 4 доп.). — СПб. 1890—1907.
- Компьютерное моделирование структуры амилолитических ферментов
- Background on Proteins, Small Molecules, and Binding
Примечания
- ↑ binding data with one class of receptors
Фармокинетика и фармокодинамика
Документ Microsoft Word (2).docx
— 45.09 Кб
Воздействие на тело человека
Большинство лекарственных средств повторяют или подавляют нормальные физиологические/биохимические процессы. В других случаях они подавляют патологические процессы или жизненно важные процессы в эндо - или эктопаразитах, в микроорганизмах.
подавляющее,
стимулирующее,
разрушающее клетки (цитотоксическое),
раздражающее,
замещающее недостающие вещества.
Лекарственные вещества оказывают как желательные, так и нежелательные действия. К числу первых относят:
нарушение клеточных мембран. В частности, полагали, что средства для общего наркоза нарушают мембраны нейронов, изменяя движение ионов Na+;
химические реакции. Так, антациды химически соединяются в организме с кислыми продуктами;
взаимодействие с ферментными белками. В частности, аспирин необратимо подавляет циклогеназу, чем предотвращает воспалительный ответ;
взаимодействие со структурными белками. Так. колхицин взаимодействует со структурным белком тубулином;
взаимодействие с белками-переносчиками. Дигиталис угнетает активность молекулы-переносчика насоса Na-K-ATФазы;
взаимодействие с ионными каналами.
Лиганд связывается с рецепторами клеток, чем определяет деятельность этих клеток. Это может быть нормальная реакция — действует как агонист, это может быть блокирующая деятельность — действует как антагонист. Наконец, возможно необычная реакция — инвертный агонист. Лиганд связывается с гормональным рецептором, с нейромодуляторным рецептором или нейропередающим рецептором.
К числу нежелательных действий относят:
повреждение клетки,
взаимодействие с клеткой (суммирующее, умножающее или метаболическое),
индуцирование физиологического повреждения или ненормального хронического состояния.
Фармакодинамика
Фармакодинамика - фармакологические эффекты, механизмы действия, локализация действия, виды действия лекарственных веществ.
Фармакологические эффекты лекарственного вещества — изменения в деятельности органов, систем организма, которые вызывает данное вещество (например, усиление сокращений сердца, снижение артериального давления, стимуляция умственной деятельности, устранение страха и напряженности и т. п.). Как правило, каждое вещество вызывает ряд характерных для него фармакологических эффектов. В каждом конкретном случае используют лишь определенные эффекты лекарственного средства, которые определяют как основные эффекты. Остальные (не используемые, нежелательные) фармакологические эффекты называют побочными эффектами.
Механизмы действия лекарственных веществ — способы, которыми вещества вызывают фармакологические эффекты. К основным вариантам механизмов действия относятся действие на:
1) специфические рецепторы,
2) ферменты,
3) ионные каналы,
4) транспортные системы.
Большинство лекарственных веществ действует на специфические рецепторы. Эти рецепторы представлены чаще всего функционально активными белковыми молекулами; взаимодействие с ними дает начало биохимическим реакциям, которые ведут к возникновению фармакологических эффектов.
Различают специфические рецепторы, связанные с клеточными мембранами (мембранные рецепторы), и внутриклеточные рецепторы.
Мембранные рецепторы делят на: 1) рецепторы, сопряженные с ионными каналами, 2) рецепторы, сопряженные с ферментами, 3) рецепторы, взаимодействующие с G-белками.
К рецепторам, сопряженным с ионными каналами, относятся, в частности, N-холинорецепторы и ГАМКА - рецепторы.
При стимуляции N-холинорецепторов (никотиночувствительные холинорецепторы) открываются сопряженные с ними натриевые каналы. Вход ионов Na+ в клетку обусловливает деполяризацию клеточной мембраны и возбудительный эффект.
ГАМКА - рецепторы непосредственно сопряжены с хлорными каналами. Стимуляция ГАМКА-рецепторов ведет к открытию Сl--каналов, входу ионов Сl-, гиперполяризации клеточной мембраны и тормозному эффекту.
К рецепторам, которые сопряжены с ферментами, относятся, в частности, рецепторы инсулина, сопряженные с тирозинкиназой.
Рецепторы, взаимодействующие с G-белками, — М-холинорецепторы (мускариночувствительные холинорецепторы), адренорецепторы, дофаминовые рецепторы, опиоидные рецепторы и др.
G-белки, т. е. ГТФ-связывающие белки, локализованы в клеточной мембране и состоят из α-β-γ-,субъединиц. При взаимодействии лекарственного вещества с рецептором α - субъединица G-белка соединяется с ГТФ (GTP) и воздействует на ферменты или ионные. каналы. Один рецептор взаимодействует с несколькими G-белками, а каждый комплекс а-субъединицы G-белка с ГТФ действует ;на несколько молекул фермента или на несколько ионных каналов. Таким образом осуществляется механизм амплифайера (усилителя): при активации одного рецептора изменяется активность многих молекул фермента или многих ионных каналов.
Одними из первых были обнаружены G-белки, связанные с β 1-адренорецепторами сердца. При активации симпатической иннервации сердца возбуждаются β 1-адренорецепторы; через посредство G-белков активируется аденилатциклаза; из АТФ образуется цАМФ, активируется протеинкиназа, при действии которой фосфорилируются и открываются кальциевые каналы.
Увеличение входа ионов Са2+ в клетки синоатриального узла ускоряет 4-ю фазу потенциала действия — сокращения сердца учащаются. Открытие Са2+-каналов в волокнах рабочего миокарда ведет к увеличению концентрации Са2+ в цитоплазме (вход Са2+способствует высвобождению Са2+ из саркоплазматического ретикулума). Ионы Са2+ связываются с тропонином С (составная часть тропонин-тропомиозина); таким образом уменьшается тормозное влияние тропонин-тропомиозина на взаимодействие актина и миозина - сокращения сердца усиливаются (рис. 3).
При активации парасимпатической иннервации сердца (блуждающие нервы) возбуждаются М2-холинорецепторы и через посредство G-белков аденилатциклаза угнетается — сокращения сердца урежаются и ослабляются (в основном ослабляются сокращения предсердий, так как парасимпатическая иннервация желудочков относительно бедна).
Таким образом, G-белки могут оказывать на аденилатциклазу как стимулирующее, так и угнетающее влияние. Стимулирующие G-белки обозначили как Gs - белки (stimulate), а угнетающие — Gi-белки (inhibit) (рис. 4).
При возбуждении М1-холинорецепторов, М3-холинорецепторов, α1-адренорецепторов через Gq белки активируется фосфолипаза С, которая способствует тому, что из фосфатидилинозитол-4,5-дифос - фата образуются инозитол-1,4,5-трифосфат и диацилглицерол. Инозитол-1,4,5-трифосфат стимулирует высвобождение ионов Са2+ из саркоплазматического ретикулума (рис. 5, 6).
К внутриклеточным рецепторам относятся рецепторы кортико-стероидов и половых гормонов. В частности, рецепторы глюкокор-тикоидов локализованы в цитоплазме клеток. После соединения глюкокортикоида с цитоплазматическими рецепторами комплекс глюкокортикоид-рецептор проникает в ядро и оказывает влияние на экспрессию различных генов. Рисунок 5. Влияние фосфолипазы С на уровень цитоппазматического Са2+.
Способность веществ связываться с рецепторами (тенденция веществ к связыванию с рецепторами) обозначают термином «аффинитет». По отношению к одним и тем же рецепторам аффинитет разных веществ может быть различным. Для характеристики аффинитета используют показатель pKD - отрицательный логарифм константы диссоциации, т. е. концентрации вещества, при которой занято 50% рецепторов.
Рисунок 6. Механизм сокращения гладких мышц артериальных сосудов при стимуляции симпатической иннервации.
ФПС - фосфолипаза С; ФИФ2 - фосфатидилинозитол -4,5- дифосфат; ИФ3 - инозитоп -
1,4,5- трифосфат; СР - саркоплазматический ретикулум; КЛЦМ - киназа легких цепей миозина.
Внутренняя активность - это способность веществ стимулировать рецепторы; определяется по величине фармакологического эффекта, связанного с активацией рецептора. В обычных условиях нет прямой корреляции между аффинитетом и внутренней активностью: вещество может занимать все рецепторы и вызывать слабый эффект, и, наоборот, вещество может занимать 1% рецепторов и вызывать максимальный для данной системы эффект.
Агонисты — вещества, обладающие аффинитетом и внутренней активностью.
Полные агонисты обладают аффинитетом и максимальной внутренней активностью. Частичные (парциальные) агонисты обладают аффинитетом и менее, чем максимальной внутренней активностью.
Антагонисты обладают аффинитетом, не обладают внутренней активностью и препятствуют действию полных или частичных агонистов (вытесняют агонисты из связи с рецепторами). Если действие антагониста устраняется при повышении дозы агониста, такой антагонизм называют конкурентным.
Частичные агонисты могут быть антагонистами полных агонистов. В отсутствие полного агониста частичный агонист стимулирует рецепторы и вызывает слабый эффект. При взаимодействии с полным агонистом частичный агонист занимает рецепторы и препятствует действию полного агониста. Например, окспренолол — частичный агонист β - адренорецепторов в отсутствие влияний симпатической иннервации на сердце вызывает слабую тахикардию. Но при повышении тонуса симпатической иннервации окспренолол действует, как настоящий β - адреноблокатор, и вызывает брадикардию. Это объясняется тем, что частичный агонист окспренолол устраняет действие медиатора норадреналина, который по отношению к β 1 - адренорецепторам сердца является полным агонистом.
Агонисты-антагонисты — вещества, которые по-разному действуют на подтипы одних и тех же рецепторов: одни подтипы рецепторов они стимулируют, а другие - блокируют. Например, наркотический анальгетик налбуфин по-разному действует на подтипы опиоидных рецепторов. Каппа-рецепторы налбуфин стимулирует (и поэтому снижает болевую чувствительность), а мю-рецепторы блокирует (и поэтому менее опасен в плане лекарственной зависимости).
Примером влияния веществ на ферменты может быть действие антихолинэстеразных средств которые блокируют ацетилхолинэстеразу (фермент, расщепляющий ацетилхолин) и таким образом усиливают и удлиняют действие ацетилхолина.
Известны лекарственные вещества, которые стимулируют или блокируют ионные каналы клеточных мембран, т. е. каналы, которые избирательно проводят ионы Na+, K+, Са2+ (натриевые, калиевые, кальциевые каналы) и др. Например, местноанестезирующие и некоторые противоаритмические вещества (прокаин, хинидин) блокируют натриевые каналы. В медицинской практике применяют блокаторы кальциевых каналов, активаторы калиевых каналов.
Примером влияния веществ на транспортные системы может быть действие трициклических антидепрессантов, которые блокируют обратный транспорт норадреналина и серотонина через пресинаптическую мембрану.
Возможны и другие механизмы действия. Например, диуретик маннитол увеличивает диурез за счет повышения осмотического давления в почечных канальцах.
Механизмы действия разных лекарственных веществ изучены в разной степени. В процессе их изучения представления о механизмах действия могут не только усложняться, но и существенно меняться.
Понятие «локализация действия» означает преимущественное место (места) действия тех или иных лекарственных веществ. Например, сердечные гликозиды действуют в основном на сердце.
К понятию «виды действия» относятся местное и общее (резор-бтивное) действие, рефлекторное действие, основное и побочное действие, прямое и косвенное действие.
Примером местного действия может быть действие местноанес-тезирующих средств.
Большинство лекарств оказывают общее (резорбтивное) действие, которое обычно развивается после всасывания (резорбции) вещества в кровь и его распространения в организме.
Как при местном, так и при резорбтивном действии вещества могут возбуждать различные чувствительные рецепторы и вызывать рефлекторные реакции.
Основное действие лекарственного вещества — его эффекты, которые используются в каждом конкретном случае. Все остальные эффекты при этом оценивают как проявления побочного действия.
Лекарственные вещества могут оказывать на те или иные органы прямое действие. Кроме того, действие лекарственных веществ может быть косвенным. Например, сердечные гликозиды оказывают на сердце прямое действие, но, улучшая работу сердца, эти вещества повышают кровоснабжение и функции других органов (косвенное действие).
Главная > Реферат >Биология
Биотрансформация
Метаболическая трансформация – превращение веществ за счет окисления, восстановления и гидролиза.
Конъюгация – это биосинтетический процесс, сопровождащийся присоединением к лекарственным веществ или его метаболитам ряда химических препаратов.
Выведение ЛВ из организма:
Элиминация – выведение лекарственных средств из организма в результате биотрансформации и экскреции.
Пресистемная – осуществляется при прохождении ЛВ через стенку кишечника, печень, легкие до его попадания в систему кровообращения (до его действия).
Системная – удаление вещества из системы кровообращения (после его действия).
Экскреция – выведение лекарственных средств (с мочой, калом, секретами желез, выдыхаемым воздухом).
Для количественной характеристика элиминации используют параметры:
Константа скорости элиминации (Ке lim ) - отражает скорость удаления вещества из организма.
«Период полужизни » (Т50) – отражает время, необходимое для снижения концентрации вещества в плазме крови на 50%
Фармакодинамика – раздел фармакологии, изучающий локализацию, механизм действия ЛС и их биохимические эффекты (то что лекарство делает с организмом).
Для проявления действия ЛС должно вступить во взаимодействие с биологическими субстратами.
Тема: фармакология Рязгму вариант № 17 | Контрольные работы
17. Первичная фармакологическая реакция и способы взаимодействия лекарственного вещества с рецептором. Типовые механизмы действия.
Фармакодинамика состоит из первичной и вторичной фармакологических реакций. Первичная фармакологическая реакция представляет собой взаимодействие с циторецепторами — биомакромолекулами, генетически детерминированными для взаимодействия с биологически активными веществами, включая лекарственные средства.
Взаимодействие с циторецепторами необходимо для развития вторичной фармакологической реакции в виде изменений метаболизма и функций клеток и органов. Нерецепторные механизмы действия встречаются редко. Отсутствуют циторецепторы для ингаляционных наркозных, осмотических мочегонных средств, плазмозаменителей, комплексонообразователей.
Одна и та же первичная фармакологическая реакция может приводить к различным вторичным изменениям (возбуждение В1-адренорецепторов норадреналином вызывает расширение зрачков и сужение сосудов). В основе вторичной фармакологической реакции иногда лежат различные первичные механизмы (спазм бронхов возникает при возбуждении М-холинорецепторов ацетилхолином или H1-рецепторов гистамином).
Взаимодействие лекарственных средств с циторецепторами
Циторецепторы (греч. kytos — сосуд, клетка, лат. recipere — получать) созданы природой для эндогенных лигандов — гормонов, факторов роста, нейромедиаторов, аутакоидов. Они имеют структуру липопротеинов, гликопротеинов, металлопротеинов, нуклеопротеинов. Реакция рецепторов на ксенобиотики обусловлена низкой специфичностью взаимодействия. Как правило, ксенобиотики обладают такой же, как и биологически активные вещества организма, стереохимической композицией.
В структуре циторецепторов присутствуют домен для связывания лигандов и эффекторный домен. Активные центры циторецепторов образованы функциональными группами аминокислот, фосфатидов, нуклеотидов, сахаров.
Лекарственные средства устанавливают с циторецепторами непрочные физико-химические связи — вандерваальсовы, ионные, водородные, дипольные по принципу комплементарности (активные группы лекарств взаимодействуют с соответствующими группами активного центра циторецепторов).
Необратимые ковалентные связи с циторецепторами образуют немногие вещества — необратимые ингибиторы холинэстеразы, тяжелые металлы, цитостатики. Все они высокотоксичны.
По отношению к циторецепторам лекарственные средства обладают аффинитетом (лат. affinis — родственный) и внутренней активностью. Аффинитет (сродство) рассматривают как способность образовывать комплекс с циторецепторами. Внутренняя активность направлена на создание их активной стереоконформации, приводящей к появлению клеточного ответа. В зависимости от выраженности аффинитета и наличия внутренней активности лекарственные средства разделяют на 2 группы:
-агонисты (греч. agonistes — соперник, agon — борьба), или миметики (греч. mimeomai — подражать) — вещества с умеренным аффинитетом и высокой внутренней активностью: полные агонисты вызывают максимально возможный клеточный ответ, частичные (парциальные) агонисты — менее значительную клеточную реакцию;
-антагонисты (греч. antagonisma — соперничество, anti — против, agon — борьба) или блокаторы — вещества с высоким аффинитетом, но лишенные внутренней активности. Они экранируют циторецепторы от действия эндогенных лигандов и препятствуют развитию клеточного ответа, усиливая эффекты других, неблокированных циторецепторов. Вещества, блокирующие активные центры циторецепторов, являются конкурентными антагонистами.
Возможно сочетание в фармакодинамике свойств агониста и антагониста, например, агонисты-антагонисты возбуждают одни циторецепторы и блокируют другие.
Циторецепторы возбуждаются только в начальный момент взаимодействия с лекарственными средствами. Для агонистов характерна высокая константа диссоциации комплекса лекарство — циторецептор. Антагонисты, обладая высоким аффинитетом, более продолжительно связываются с циторецепторами, при этом в первый момент взаимодействия возможно появление эффекта возбуждения.
Лекарственные средства присоединяются также к аллостерическим центрам циторецепторов, что модифицирует структуру активных центров и изменяет их реакцию на лекарства или эндогенные лиганды. Пример аллостерических рецепторов — бензодиазепиновые рецепторы, повышающие аффинитет ГАМК-рецепторов типа А.
На мембране одной и той же клетки может присутствовать более 10 типов циторецепторов с различным функциональным значением, поэтому клеточный ответ на возбуждение циторецепторов является алгебраической суммой вызываемых ими независимых реакций.
Циторецепторы классифицируют на 4 типа (рис. 3):
1. рецепторы-протеинкиназы;
style="display:inline-block;width:300px;height:250px"
data-ad-client="ca-pub-6667286237319125"
data-ad-slot="5736897066">
Комментариев нет:
Отправить комментарий